Properties

Label 3.15.15.22
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(15\)
Galois group $C_3^4:C_{10}$ (as 15T33)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 30 x^{14} + 375 x^{13} + 2535 x^{12} + 10323 x^{11} + 28530 x^{10} + 63729 x^{9} + 116235 x^{8} + 143937 x^{7} + 149310 x^{6} + 107001 x^{5} + 66015 x^{4} + 25920 x^{3} + 8991 x^{2} + 1215 x + 243\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification exponent $e$: $3$
Residue field degree $f$: $5$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$\card{ \Aut(K/\Q_{ 3 }) }$: $1$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[3/2]$

Intermediate fields

3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 6 x^{2} + \left(3 t^{3} + 3 t^{2} + 3 t + 3\right) x + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2t^{3} + 2t^{2} + 2t + 2$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_3^4:C_{10}$ (as 15T33)
Inertia group:Intransitive group isomorphic to $C_3^3:S_3$
Wild inertia group:$C_3^4$
Unramified degree:$5$
Tame degree:$2$
Wild slopes:$[3/2, 3/2, 3/2, 3/2]$
Galois mean slope:$241/162$
Galois splitting model: $x^{15} - 12 x^{13} - 30 x^{12} + 18 x^{11} + 288 x^{10} + 440 x^{9} - 522 x^{8} - 1995 x^{7} - 1624 x^{6} + 414 x^{5} + 2166 x^{4} + 4531 x^{3} + 7002 x^{2} + 5403 x + 1453$ Copy content Toggle raw display