Properties

Label 3.15.15.20
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(15\)
Galois group $C_3^4:C_{10}$ (as 15T33)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} - 9 x^{14} + 174 x^{13} + 4479 x^{12} + 39375 x^{11} + 186093 x^{10} + 548082 x^{9} + 1077138 x^{8} + 1457352 x^{7} + 1359531 x^{6} + 855117 x^{5} + 350973 x^{4} + 91287 x^{3} + 16281 x^{2} + 2430 x + 243\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification exponent $e$: $3$
Residue field degree $f$: $5$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $i$
$\card{ \Aut(K/\Q_{ 3 }) }$: $1$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[3/2]$

Intermediate fields

3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + \left(3 t^{4} + 6 t^{3} + 3 t^{2} + 3\right) x^{2} + \left(6 t^{3} + 3 t^{2} + 3 t + 6\right) x + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + t^{3} + 2t^{2} + 2t + 1$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_3^4:C_{10}$ (as 15T33)
Inertia group:Intransitive group isomorphic to $C_3^3:S_3$
Wild inertia group:$C_3^4$
Unramified degree:$5$
Tame degree:$2$
Wild slopes:$[3/2, 3/2, 3/2, 3/2]$
Galois mean slope:$241/162$
Galois splitting model: $x^{15} - x^{12} - 4 x^{9} + 3 x^{6} + 3 x^{3} - 1$ Copy content Toggle raw display