Properties

Label 3.15.12.1
Base \(\Q_{3}\)
Degree \(15\)
e \(5\)
f \(3\)
c \(12\)
Galois group $F_5\times C_3$ (as 15T8)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 10 x^{13} + 5 x^{12} + 40 x^{11} + 49 x^{10} + 90 x^{9} + 30 x^{8} - 130 x^{7} + 410 x^{6} + 269 x^{5} + 765 x^{4} - 515 x^{3} + 730 x^{2} + 205 x + 94\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification exponent $e$: $5$
Residue field degree $f$: $3$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 3 }) }$: $3$
This field is not Galois over $\Q_{3}.$
Visible slopes:None

Intermediate fields

3.3.0.1, 3.5.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.3.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{3} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{4} + 2z^{3} + z^{2} + z + 2$
Associated inertia:$4$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_3\times F_5$ (as 15T8)
Inertia group:Intransitive group isomorphic to $C_5$
Wild inertia group:$C_1$
Unramified degree:$12$
Tame degree:$5$
Wild slopes:None
Galois mean slope:$4/5$
Galois splitting model: $x^{15} - 48 x^{10} - 513 x^{5} + 27$ Copy content Toggle raw display