Properties

Label 3.12.22.77
Base \(\Q_{3}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(22\)
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 36 x^{7} - 12 x^{6} + 81 x^{4} + 486 x^{2} - 216 x + 117\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification exponent $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $22$
Discriminant root field: $\Q_{3}$
Root number: $1$
$\card{ \Aut(K/\Q_{ 3 }) }$: $6$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[5/2]$

Intermediate fields

$\Q_{3}(\sqrt{2})$, $\Q_{3}(\sqrt{3})$, $\Q_{3}(\sqrt{3\cdot 2})$, 3.4.2.1, 3.6.11.21

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + \left(9 t + 9\right) x^{2} + 18 x + 9 t + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$2z^{2} + 1$,$z^{3} + 2$
Associated inertia:$1$,$1$
Indices of inseparability:$[6, 0]$

Invariants of the Galois closure

Galois group:$C_6\times S_3$ (as 12T18)
Inertia group:Intransitive group isomorphic to $C_3\times S_3$
Wild inertia group:$C_3^2$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:$[2, 5/2]$
Galois mean slope:$13/6$
Galois splitting model:$x^{12} - 30 x^{9} + 288 x^{6} - 378 x^{3} + 567$