Defining polynomial
\(x^{10} + 3\)
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $10$ |
Ramification exponent $e$: | $10$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $9$ |
Discriminant root field: | $\Q_{3}(\sqrt{3\cdot 2})$ |
Root number: | $-i$ |
$\card{ \Aut(K/\Q_{ 3 }) }$: | $2$ |
This field is not Galois over $\Q_{3}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{3}(\sqrt{3\cdot 2})$, 3.5.4.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{3}$ |
Relative Eisenstein polynomial: |
\( x^{10} + 3 \)
|
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $C_2\times F_5$ (as 10T5) |
Inertia group: | $C_{10}$ (as 10T1) |
Wild inertia group: | $C_1$ |
Unramified degree: | $4$ |
Tame degree: | $10$ |
Wild slopes: | None |
Galois mean slope: | $9/10$ |
Galois splitting model: |
$x^{10} + 3$
|