Defining polynomial
\(x^{10} + 15 x^{8} + 94 x^{6} + 2 x^{5} + 210 x^{4} - 60 x^{3} + 229 x^{2} + 94 x + 364\)
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $10$ |
Ramification exponent $e$: | $2$ |
Residue field degree $f$: | $5$ |
Discriminant exponent $c$: | $5$ |
Discriminant root field: | $\Q_{3}(\sqrt{3\cdot 2})$ |
Root number: | $i$ |
$\card{ \Gal(K/\Q_{ 3 }) }$: | $10$ |
This field is Galois and abelian over $\Q_{3}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{3}(\sqrt{3\cdot 2})$, 3.5.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of
\( x^{5} + 2 x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{2} + 3 \)
$\ \in\Q_{3}(t)[x]$
|
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $C_{10}$ (as 10T1) |
Inertia group: | Intransitive group isomorphic to $C_2$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $5$ |
Tame degree: | $2$ |
Wild slopes: | None |
Galois mean slope: | $1/2$ |
Galois splitting model: | $x^{10} - x^{9} - 295 x^{8} + 597 x^{7} + 20336 x^{6} - 17020 x^{5} - 410864 x^{4} + 57528 x^{3} + 2370555 x^{2} + 227843 x - 847847$ |