Properties

Label 23.22.21.1
Base \(\Q_{23}\)
Degree \(22\)
e \(22\)
f \(1\)
c \(21\)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{22} + 506\) Copy content Toggle raw display

Invariants

Base field: $\Q_{23}$
Degree $d$: $22$
Ramification exponent $e$: $22$
Residue field degree $f$: $1$
Discriminant exponent $c$: $21$
Discriminant root field: $\Q_{23}(\sqrt{23})$
Root number: $i$
$\card{ \Gal(K/\Q_{ 23 }) }$: $22$
This field is Galois and abelian over $\Q_{23}.$
Visible slopes:None

Intermediate fields

$\Q_{23}(\sqrt{23})$, 23.11.10.10

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{23}$
Relative Eisenstein polynomial: \( x^{22} + 506 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{21} + 22z^{20} + z^{19} + 22z^{18} + z^{17} + 22z^{16} + z^{15} + 22z^{14} + z^{13} + 22z^{12} + z^{11} + 22z^{10} + z^{9} + 22z^{8} + z^{7} + 22z^{6} + z^{5} + 22z^{4} + z^{3} + 22z^{2} + z + 22$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_{22}$ (as 22T1)
Inertia group:$C_{22}$ (as 22T1)
Wild inertia group:$C_1$
Unramified degree:$1$
Tame degree:$22$
Wild slopes:None
Galois mean slope:$21/22$
Galois splitting model:Not computed