Defining polynomial
\(x^{22} + 506\)
|
Invariants
Base field: | $\Q_{23}$ |
Degree $d$: | $22$ |
Ramification exponent $e$: | $22$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $21$ |
Discriminant root field: | $\Q_{23}(\sqrt{23})$ |
Root number: | $i$ |
$\card{ \Gal(K/\Q_{ 23 }) }$: | $22$ |
This field is Galois and abelian over $\Q_{23}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{23}(\sqrt{23})$, 23.11.10.10 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{23}$ |
Relative Eisenstein polynomial: |
\( x^{22} + 506 \)
|
Ramification polygon
Residual polynomials: | $z^{21} + 22z^{20} + z^{19} + 22z^{18} + z^{17} + 22z^{16} + z^{15} + 22z^{14} + z^{13} + 22z^{12} + z^{11} + 22z^{10} + z^{9} + 22z^{8} + z^{7} + 22z^{6} + z^{5} + 22z^{4} + z^{3} + 22z^{2} + z + 22$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois group: | $C_{22}$ (as 22T1) |
Inertia group: | $C_{22}$ (as 22T1) |
Wild inertia group: | $C_1$ |
Unramified degree: | $1$ |
Tame degree: | $22$ |
Wild slopes: | None |
Galois mean slope: | $21/22$ |
Galois splitting model: | Not computed |