Properties

Label 23.22.21.1
Base \(\Q_{23}\)
Degree \(22\)
e \(22\)
f \(1\)
c \(21\)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{22} + 506\) Copy content Toggle raw display

Invariants

Base field: $\Q_{23}$
Degree $d$: $22$
Ramification exponent $e$: $22$
Residue field degree $f$: $1$
Discriminant exponent $c$: $21$
Discriminant root field: $\Q_{23}(\sqrt{23})$
Root number: $i$
$\card{ \Gal(K/\Q_{ 23 }) }$: $22$
This field is Galois and abelian over $\Q_{23}.$
Visible slopes:None

Intermediate fields

$\Q_{23}(\sqrt{23})$, 23.11.10.10

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{23}$
Relative Eisenstein polynomial: \( x^{22} + 506 \) Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_{22}$ (as 22T1)
Inertia group: $C_{22}$ (as 22T1)
Wild inertia group: $C_1$
Unramified degree: $1$
Tame degree: $22$
Wild slopes: None
Galois mean slope: $21/22$
Galois splitting model:Not computed