Properties

Label 23.12.9.1
Base \(\Q_{23}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(9\)
Galois group $D_4 \times C_3$ (as 12T14)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 8 x^{10} + 72 x^{9} + 93 x^{8} + 432 x^{7} + 1608 x^{6} - 19008 x^{5} + 10115 x^{4} + 20592 x^{3} + 219376 x^{2} + 154296 x + 181359\) Copy content Toggle raw display

Invariants

Base field: $\Q_{23}$
Degree $d$: $12$
Ramification exponent $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $9$
Discriminant root field: $\Q_{23}(\sqrt{23})$
Root number: $-i$
$\card{ \Aut(K/\Q_{ 23 }) }$: $6$
This field is not Galois over $\Q_{23}.$
Visible slopes:None

Intermediate fields

$\Q_{23}(\sqrt{23\cdot 5})$, 23.3.0.1, 23.4.3.1, 23.6.3.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:23.3.0.1 $\cong \Q_{23}(t)$ where $t$ is a root of \( x^{3} + 2 x + 18 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 23 \) $\ \in\Q_{23}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + 4z^{2} + 6z + 4$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_3\times D_4$ (as 12T14)
Inertia group:Intransitive group isomorphic to $C_4$
Wild inertia group:$C_1$
Unramified degree:$6$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:Not computed