Properties

Label 23.12.0.1
Base \(\Q_{23}\)
Degree \(12\)
e \(1\)
f \(12\)
c \(0\)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 21 x^{7} + 21 x^{6} + 15 x^{5} + 14 x^{4} + 12 x^{3} + 18 x^{2} + 12 x + 5\) Copy content Toggle raw display

Invariants

Base field: $\Q_{23}$
Degree $d$: $12$
Ramification exponent $e$: $1$
Residue field degree $f$: $12$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{23}(\sqrt{5})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 23 }) }$: $12$
This field is Galois and abelian over $\Q_{23}.$
Visible slopes:None

Intermediate fields

$\Q_{23}(\sqrt{5})$, 23.3.0.1, 23.4.0.1, 23.6.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:23.12.0.1 $\cong \Q_{23}(t)$ where $t$ is a root of \( x^{12} + 21 x^{7} + 21 x^{6} + 15 x^{5} + 14 x^{4} + 12 x^{3} + 18 x^{2} + 12 x + 5 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 23 \) $\ \in\Q_{23}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:trivial
Wild inertia group:$C_1$
Unramified degree:$12$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{12} - x^{11} - 44 x^{10} + 23 x^{9} + 608 x^{8} - 288 x^{7} - 3367 x^{6} + 1647 x^{5} + 7459 x^{4} - 2633 x^{3} - 7037 x^{2} + 1034 x + 2209$