Properties

Label 23.1.13.12a1.1
Base \(\Q_{23}\)
Degree \(13\)
e \(13\)
f \(1\)
c \(12\)
Galois group $C_{13}:C_6$ (as 13T5)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{13} + 23\) Copy content Toggle raw display

Invariants

Base field: $\Q_{23}$
Degree $d$: $13$
Ramification index $e$: $13$
Residue field degree $f$: $1$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{23}$
Root number: $1$
$\Aut(K/\Q_{23})$: $C_1$
This field is not Galois over $\Q_{23}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$22 = (23 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 23 }$.

Canonical tower

Unramified subfield:$\Q_{23}$
Relative Eisenstein polynomial: \( x^{13} + 23 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{12} + 13 z^{11} + 9 z^{10} + 10 z^9 + 2 z^8 + 22 z^7 + 14 z^6 + 14 z^5 + 22 z^4 + 2 z^3 + 10 z^2 + 9 z + 13$
Associated inertia:$6$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $78$
Galois group: $C_{13}:C_6$ (as 13T5)
Inertia group: $C_{13}$ (as 13T1)
Wild inertia group: $C_1$
Galois unramified degree: $6$
Galois tame degree: $13$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9230769230769231$
Galois splitting model:not computed