| $( x^{9} + x^{4} + 1 )^{2} + \left(2 x^{5} + 2 x^{3} + 2\right) ( x^{9} + x^{4} + 1 ) + 4 x^{2} + 2$ ![Copy content]()  ![Toggle raw display]()  | 
  Fields in the database are given up to isomorphism.  Isomorphic 
  intermediate fields are shown with their multiplicities.
  | Unramified subfield: | 2.9.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of 
    \( x^{9} + x^{4} + 1 \) ![Copy content]()  ![Toggle raw display]()  | 
  | Relative Eisenstein polynomial: | \( x^{2} + \left(2 t^{7} + 2 t^{6} + 2 t^{5} + 2 t^{4} + 2 t^{3} + 2 t^{2} + 2 t + 2\right) x + 4 t + 2 \)
    
    $\ \in\Q_{2}(t)[x]$ ![Copy content]()  ![Toggle raw display]()  | 
       
    
  
  | Galois degree: | $4608$ | 
  | Galois group: | $C_2\wr C_9$ (as 18T460) | 
  | Inertia group: | Intransitive group isomorphic to $C_2^8$ | 
  | Wild inertia group: | $C_2^8$ | 
  | Galois unramified degree: | $18$ | 
  | Galois tame degree: | $1$ | 
  | Galois Artin slopes: | $[2, 2, 2, 2, 2, 2, 2, 2]$ | 
| Galois Swan slopes: | $[1,1,1,1,1,1,1,1]$ | 
  | Galois mean slope: | $1.9921875$ | 
  | Galois splitting model: | $x^{18} - 30 x^{16} + 324 x^{14} - 1323 x^{12} - 567 x^{10} + 16767 x^{8} - 21870 x^{6} - 45927 x^{4} + 59049 x^{2} + 19683$ ![Copy content]()  ![Toggle raw display]()  |