Defining polynomial
\(x^{8} + 8 x^{7} + 10 x^{6} - 16 x^{5} + 80 x^{4} + 96 x^{3} + 100 x^{2} + 144 x + 84\) |
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $8$ |
Ramification exponent $e$: | $4$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $18$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\card{ \Aut(K/\Q_{ 2 }) }$: | $2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible slopes: | $[2, 7/2]$ |
Intermediate fields
$\Q_{2}(\sqrt{5})$, 2.4.4.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) |
Relative Eisenstein polynomial: | \( x^{4} + 4 x^{3} + 6 t x^{2} + \left(8 t + 8\right) x + 8 t + 10 \) $\ \in\Q_{2}(t)[x]$ |
Ramification polygon
Data not computedInvariants of the Galois closure
Galois group: | $C_2\wr C_2^2$ (as 8T29) |
Inertia group: | Intransitive group isomorphic to $C_2^2\wr C_2$ |
Wild inertia group: | $C_2^2\wr C_2$ |
Unramified degree: | $2$ |
Tame degree: | $1$ |
Wild slopes: | $[2, 2, 3, 7/2, 7/2]$ |
Galois mean slope: | $51/16$ |
Galois splitting model: | $x^{8} - 2 x^{6} - 4 x^{2} + 4$ |