Properties

Label 2.8.16.20
Base \(\Q_{2}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(16\)
Galois group $V_4^2:S_3$ (as 8T34)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} - 4 x^{6} + 8 x^{5} + 20 x^{4} - 16 x^{3} + 8 x^{2} + 16 x + 4\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification exponent $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $1$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[8/3, 8/3]$

Intermediate fields

$\Q_{2}(\sqrt{5})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 4 t x^{2} + 4 x + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$
Associated inertia:$1$
Indices of inseparability:$[5, 4, 0]$

Invariants of the Galois closure

Galois group:$C_2^2:S_4$ (as 8T34)
Inertia group:Intransitive group isomorphic to $C_2^2:A_4$
Wild inertia group:$C_2^4$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:$[4/3, 4/3, 8/3, 8/3]$
Galois mean slope:$55/24$
Galois splitting model:$x^{8} + 2 x^{6} + 7 x^{4} - 88 x^{3} + 226 x^{2} - 220 x + 75$

Additional information

This is the only octic extension of $\Q_p$ for any prime $p$ with Galois group $C_2^2:S_4$. Based on general restrictions of the higher ramification filtration, the only prime $p$ for which there can be $S_4$ extensions is $p=2$, and the Galois closure of this field is the compositum of all such extensions.