Base \(\Q_{2}\)
Degree \(6\)
e \(2\)
f \(3\)
c \(9\)
Galois group $C_6$ (as 6T1)

Related objects

Learn more

Defining polynomial

\(x^{6} - 4 x^{4} + 4 x^{2} + 8\)  Toggle raw display


Base field: $\Q_{2}$
Degree $d$: $6$
Ramification exponent $e$: $2$
Residue field degree $f$: $3$
Discriminant exponent $c$: $9$
Discriminant root field: $\Q_{2}(\sqrt{-2})$
Root number: $-i$
$|\Gal(K/\Q_{ 2 })|$: $6$
This field is Galois and abelian over $\Q_{2}.$

Intermediate fields


Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield: $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)  Toggle raw display
Relative Eisenstein polynomial:\( x^{2} + 2 t^{2} \)$\ \in\Q_{2}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:Intransitive group isomorphic to $C_2$
Wild inertia group:$C_2$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[3]
Galois mean slope:$3/2$
Galois splitting model:$x^{6} + 12 x^{4} + 36 x^{2} + 8$