Base \(\Q_{2}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(11\)
Galois group $S_4\times C_2$ (as 6T11)

Related objects

Learn more

Defining polynomial

\(x^{6} + 6 x^{4} + 6\)  Toggle raw display


Base field: $\Q_{2}$
Degree $d$: $6$
Ramification exponent $e$: $6$
Residue field degree $f$: $1$
Discriminant exponent $c$: $11$
Discriminant root field: $\Q_{2}(\sqrt{2\cdot 5})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}.$

Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{6} + 6 x^{4} + 6 \)  Toggle raw display

Invariants of the Galois closure

Galois group:$C_2\times S_4$ (as 6T11)
Inertia group:$A_4\times C_2$
Wild inertia group:$C_2^3$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 3]
Galois mean slope:$25/12$
Galois splitting model:$x^{6} + 6 x^{4} + 6$