Properties

Label 2.2.8.56b2.2028
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(56\)
Galois group $C_2^6:D_4$ (as 16T956)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 24\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $56$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, 4, \frac{17}{4}]$
Visible Swan slopes:$[2,3,\frac{13}{4}]$
Means:$\langle1, 2, \frac{21}{8}\rangle$
Rams:$(2, 4, 5)$
Jump set:$[1, 3, 7, 15]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.2.6a1.4, 2.2.4.22a1.41

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 8 x^{6} + \left(8 t + 8\right) x^{5} + 4 t x^{4} + \left(8 t + 24\right) x^{2} + 16 x + 8 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 1$,$z^2 + 1$,$z + t$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[21, 16, 8, 0]$

Invariants of the Galois closure

Galois degree: $512$
Galois group: $C_2^6:D_4$ (as 16T956)
Inertia group: Intransitive group isomorphic to $C_2^6:C_4$
Wild inertia group: $C_2^6:C_4$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]$
Galois mean slope: $4.0859375$
Galois splitting model: $x^{16} + 32 x^{14} - 40 x^{13} + 452 x^{12} - 816 x^{11} + 3872 x^{10} - 4920 x^{9} + 13888 x^{8} - 16416 x^{7} - 50312 x^{6} + 33064 x^{5} + 31008 x^{4} + 3856 x^{3} + 95224 x^{2} + 108280 x + 32119$ Copy content Toggle raw display