Properties

Label 2.2.6.16a1.6
Base \(\Q_{2}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(16\)
Galois group $C_3 : C_4$ (as 12T5)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{3} + 4 x + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification index $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $-1$
$\Aut(K/\Q_{2})$ $=$$\Gal(K/\Q_{2})$: $C_3:C_4$
This field is Galois over $\Q_{2}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{1}{2}\rangle$
Rams:$(3)$
Jump set:$[3, 12]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.1.3.2a1.1 x3, 2.2.2.4a1.2, 2.2.3.4a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 2 x^{3} + 4 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{4} + z^{2} + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[3, 0]$

Invariants of the Galois closure

Galois degree: $12$
Galois group: $C_3:C_4$ (as 12T5)
Inertia group: Intransitive group isomorphic to $C_6$
Wild inertia group: $C_2$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[2]$
Galois Swan slopes: $[1]$
Galois mean slope: $1.3333333333333333$
Galois splitting model:$x^{12} - 39 x^{10} + 486 x^{8} - 120 x^{7} - 2259 x^{6} + 1380 x^{5} + 3126 x^{4} - 2980 x^{3} - 15 x^{2} + 420 x + 5$