Properties

Label 2.16.78.4017
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(78\)
Galois group $C_2^6.C_2\wr D_4$ (as 16T1737)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 16 x^{15} + 48 x^{14} + 32 x^{13} + 56 x^{12} + 32 x^{11} + 48 x^{10} + 40 x^{8} + 48 x^{6} + 40 x^{4} + 34\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification exponent $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $78$
Discriminant root field: $\Q_{2}(\sqrt{-5})$
Root number: $-i$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[3, 4, 5, 47/8]$

Intermediate fields

$\Q_{2}(\sqrt{-2})$, 2.4.11.18, 2.8.31.71

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 16 x^{15} + 48 x^{14} + 32 x^{13} + 56 x^{12} + 32 x^{11} + 48 x^{10} + 40 x^{8} + 48 x^{6} + 40 x^{4} + 34 \) Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_2^6.C_2\wr D_4$ (as 16T1737)
Inertia group: $C_2^6.C_2\wr C_4$ (as 16T1585)
Wild inertia group: Not computed
Unramified degree: $2$
Tame degree: $1$
Wild slopes: $[2, 2, 3, 7/2, 4, 17/4, 19/4, 5, 41/8, 43/8, 45/8, 47/8]$
Galois mean slope: $11523/2048$
Galois splitting model:$x^{16} - 8 x^{14} + 60 x^{12} - 360 x^{10} + 1986 x^{8} - 744 x^{6} + 1124 x^{4} - 952 x^{2} + 243$