Defining polynomial
\(x^{16} + 16 x^{15} + 48 x^{14} + 32 x^{13} + 56 x^{12} + 32 x^{11} + 48 x^{10} + 40 x^{8} + 48 x^{6} + 40 x^{4} + 34\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification exponent $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $78$ |
Discriminant root field: | $\Q_{2}(\sqrt{-5})$ |
Root number: | $-i$ |
$\card{ \Aut(K/\Q_{ 2 }) }$: | $2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible slopes: | $[3, 4, 5, 47/8]$ |
Intermediate fields
$\Q_{2}(\sqrt{-2})$, 2.4.11.18, 2.8.31.71 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{16} + 16 x^{15} + 48 x^{14} + 32 x^{13} + 56 x^{12} + 32 x^{11} + 48 x^{10} + 40 x^{8} + 48 x^{6} + 40 x^{4} + 34 \)
|
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $C_2^6.C_2\wr D_4$ (as 16T1737) |
Inertia group: | $C_2^6.C_2\wr C_4$ (as 16T1585) |
Wild inertia group: | Not computed |
Unramified degree: | $2$ |
Tame degree: | $1$ |
Wild slopes: | $[2, 2, 3, 7/2, 4, 17/4, 19/4, 5, 41/8, 43/8, 45/8, 47/8]$ |
Galois mean slope: | $11523/2048$ |
Galois splitting model: | $x^{16} - 8 x^{14} + 60 x^{12} - 360 x^{10} + 1986 x^{8} - 744 x^{6} + 1124 x^{4} - 952 x^{2} + 243$ |