Properties

Label 2.16.36.1
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(36\)
Galois group $D_4\times C_2$ (as 16T9)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + \left(-8 x + 20\right) ( x^{2} + x + 1 )^{7} + \left(-28 x - 34\right) ( x^{2} + x + 1 )^{6} + \left(44 x + 42\right) ( x^{2} + x + 1 )^{5} + \left(-130 x + 99\right) ( x^{2} + x + 1 )^{4} + \left(-140 x - 82\right) ( x^{2} + x + 1 )^{3} + \left(118 x - 241\right) ( x^{2} + x + 1 )^{2} + \left(310 x + 111\right) ( x^{2} + x + 1 ) - 99 x + 280$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification exponent $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $36$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\card{ \Gal(K/\Q_{ 2 }) }$: $16$
This field is Galois over $\Q_{2}.$
Visible slopes:$[2, 2, 3]$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{5})$, $\Q_{2}(\sqrt{-2})$, $\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{2\cdot 5})$, $\Q_{2}(\sqrt{-2\cdot 5})$, $\Q_{2}(\sqrt{2})$, 2.4.6.6 x2, 2.4.4.4 x2, 2.4.8.2, 2.4.6.1, 2.4.6.2, 2.4.4.1, 2.4.6.9 x2, 2.4.8.5 x2, 2.4.8.4, 2.4.8.1, 2.4.8.3, 2.8.16.10 x2, 2.8.16.16 x2, 2.8.16.6, 2.8.16.5, 2.8.18.54 x2, 2.8.12.14, 2.8.18.56 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + \left(4 t + 2\right) x^{6} + 4 t x^{4} + 4 x^{3} + 14 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_2\times D_4$ (as 16T9)
Inertia group: Intransitive group isomorphic to $C_2^3$
Wild inertia group: $C_2^3$
Unramified degree: $2$
Tame degree: $1$
Wild slopes: $[2, 2, 3]$
Galois mean slope: $9/4$
Galois splitting model:$x^{16} - 8 x^{15} + 34 x^{14} - 92 x^{13} + 162 x^{12} - 152 x^{11} - 62 x^{10} + 444 x^{9} - 665 x^{8} + 396 x^{7} + 194 x^{6} - 564 x^{5} + 488 x^{4} - 232 x^{3} + 68 x^{2} - 12 x + 1$