Properties

Label 2.15.10.1
Base \(\Q_{2}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(10\)
Galois group $S_3 \times C_5$ (as 15T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 13 x^{12} + 3 x^{10} + 13 x^{9} - 174 x^{7} - 45 x^{6} + 3 x^{5} + 513 x^{4} + 63 x^{2} - 216 x + 109\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $15$
Ramification exponent $e$: $3$
Residue field degree $f$: $5$
Discriminant exponent $c$: $10$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $5$
This field is not Galois over $\Q_{2}.$
Visible slopes:None

Intermediate fields

2.3.2.1, 2.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.5.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{5} + x^{2} + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + z + 1$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_5\times S_3$ (as 15T4)
Inertia group:Intransitive group isomorphic to $C_3$
Wild inertia group:$C_1$
Unramified degree:$10$
Tame degree:$3$
Wild slopes:None
Galois mean slope:$2/3$
Galois splitting model:Not computed