Properties

Label 2.14.0.1
Base \(\Q_{2}\)
Degree \(14\)
e \(1\)
f \(14\)
c \(0\)
Galois group $C_{14}$ (as 14T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{14} + x^{7} + x^{5} + x^{3} + 1\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $14$
Ramification exponent $e$: $1$
Residue field degree $f$: $14$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 2 }) }$: $14$
This field is Galois and abelian over $\Q_{2}.$
Visible slopes:None

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.7.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.14.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{14} + x^{7} + x^{5} + x^{3} + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois group: $C_{14}$ (as 14T1)
Inertia group: trivial
Wild inertia group: $C_1$
Unramified degree: $14$
Tame degree: $1$
Wild slopes: None
Galois mean slope: $0$
Galois splitting model:$x^{14} + 21 x^{12} - 42 x^{11} + 350 x^{10} - 553 x^{9} + 2184 x^{8} - 2696 x^{7} + 8869 x^{6} - 8701 x^{5} + 18151 x^{4} - 8246 x^{3} + 17920 x^{2} - 8148 x + 9409$