# Properties

 Label 2.12.24.91 Base $$\Q_{2}$$ Degree $$12$$ e $$4$$ f $$3$$ c $$24$$ Galois group $C_2^5.(C_2\times C_6)$ (as 12T134)

# Related objects

## Defining polynomial

 $$x^{12} + 8 x^{11} + 4 x^{9} + 8 x^{8} + 8 x^{7} - 4 x^{6} + 4 x^{4} + 8 x^{2} + 8$$

## Invariants

 Base field: $\Q_{2}$ Degree $d$: $12$ Ramification exponent $e$: $4$ Residue field degree $f$: $3$ Discriminant exponent $c$: $24$ Discriminant root field: $\Q_{2}(\sqrt{5})$ Root number: $-1$ $|\Aut(K/\Q_{ 2 })|$: $2$ This field is not Galois over $\Q_{2}.$

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Unramified/totally ramified tower

 Unramified subfield: 2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of $$x^{3} - x + 1$$ Relative Eisenstein polynomial: $$x^{4} + \left(4 t^{2} + 4 t + 8\right) x^{3} + \left(-2 t^{2} - 4 t + 4\right) x^{2} + \left(8 t^{2} + 8 t + 4\right) x - 6 t^{2} + 6 t + 8$$$\ \in\Q_{2}(t)[x]$

## Invariants of the Galois closure

 Galois group: $C_2^5.(C_2\times C_6)$ (as 12T134) Inertia group: Intransitive group isomorphic to $C_2\times C_2^2\wr C_2$ Wild inertia group: $C_2\times C_2^2\wr C_2$ Unramified degree: $6$ Tame degree: $1$ Wild slopes: [2, 2, 2, 3, 3, 3] Galois mean slope: $91/32$ Galois splitting model: $x^{12} + 2 x^{10} - 52 x^{8} + 134 x^{6} - 33 x^{4} - 108 x^{2} - 27$