Properties

Label 2.12.24.388
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(24\)
Galois group $C_2^2.\GL(2,\mathbb{Z}/4)$ (as 12T149)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 4 x^{11} + 2 x^{6} + 4 x^{5} + 4 x^{3} + 6 x^{2} + 4 x + 14\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[4/3, 3]$

Intermediate fields

2.3.2.1, 2.6.6.8

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{12} + 4 x^{11} + 2 x^{6} + 4 x^{5} + 4 x^{3} + 6 x^{2} + 4 x + 14 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{2} + 1$,$z^{8} + z^{4} + 1$
Associated inertia:$1$,$1$,$2$
Indices of inseparability:$[13, 2, 0]$

Invariants of the Galois closure

Galois group:$C_2^2.\GL(2,\mathbb{Z}/4)$ (as 12T149)
Inertia group:$C_2^4.A_4$ (as 12T92)
Wild inertia group:$C_4^2:C_2^2$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:$[4/3, 4/3, 2, 7/3, 7/3, 3]$
Galois mean slope:$247/96$
Galois splitting model: $x^{12} - 6 x^{10} + 25 x^{8} - 132 x^{6} + 495 x^{4} - 1100 x^{2} + 1375$ Copy content Toggle raw display