Defining polynomial
\(x^{12} + 10 x^{10} + 12 x^{9} + 110 x^{8} + 80 x^{7} + 752 x^{6} + 512 x^{5} + 1636 x^{4} + 1504 x^{3} + 1224 x^{2} + 1008 x - 648\) |
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $12$ |
Ramification exponent $e$: | $4$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $24$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\card{ \Gal(K/\Q_{ 2 }) }$: | $12$ |
This field is Galois and abelian over $\Q_{2}.$ | |
Visible slopes: | $[2, 3]$ |
Intermediate fields
$\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{2})$, $\Q_{2}(\sqrt{-2\cdot 5})$, 2.3.0.1, 2.4.8.3, 2.6.6.5, 2.6.9.1, 2.6.9.7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} + x + 1 \) |
Relative Eisenstein polynomial: | \( x^{4} + \left(4 t^{2} + 4 t + 6\right) x^{2} + 4 x + 12 t + 6 \) $\ \in\Q_{2}(t)[x]$ |
Ramification polygon
Residual polynomials: | $z + 1$,$z^{2} + 1$ |
Associated inertia: | $1$,$1$ |
Indices of inseparability: | $[5, 2, 0]$ |
Invariants of the Galois closure
Galois group: | $C_2\times C_6$ (as 12T2) |
Inertia group: | Intransitive group isomorphic to $C_2^2$ |
Wild inertia group: | $C_2^2$ |
Unramified degree: | $3$ |
Tame degree: | $1$ |
Wild slopes: | $[2, 3]$ |
Galois mean slope: | $2$ |
Galois splitting model: | $x^{12} - 12 x^{10} + 54 x^{8} - 112 x^{6} + 105 x^{4} - 36 x^{2} + 1$ |