Properties

Label 2.10.15.9
Base \(\Q_{2}\)
Degree \(10\)
e \(2\)
f \(5\)
c \(15\)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 20 x^{9} + 206 x^{8} + 1376 x^{7} + 6504 x^{6} + 22496 x^{5} + 57328 x^{4} + 105856 x^{3} + 135504 x^{2} + 108864 x + 9568\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $10$
Ramification exponent $e$: $2$
Residue field degree $f$: $5$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{2}(\sqrt{-2})$
Root number: $i$
$\card{ \Gal(K/\Q_{ 2 }) }$: $10$
This field is Galois and abelian over $\Q_{2}.$
Visible slopes:$[3]$

Intermediate fields

$\Q_{2}(\sqrt{-2})$, 2.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.5.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{5} + x^{2} + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 4 x + 8 t^{3} + 14 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$
Associated inertia:$1$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois group:$C_{10}$ (as 10T1)
Inertia group:Intransitive group isomorphic to $C_2$
Wild inertia group:$C_2$
Unramified degree:$5$
Tame degree:$1$
Wild slopes:$[3]$
Galois mean slope:$3/2$
Galois splitting model:$x^{10} + 18 x^{8} + 112 x^{6} + 280 x^{4} + 240 x^{2} + 32$