Properties

Label 2.1.8.24c1.22
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(24\)
Galois group $D_{8}$ (as 8T6)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 8 x^{7} + 4 x^{6} + 2 x^{4} + 4 x^{2} + 8 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, 4]$
Visible Swan slopes:$[1,2,3]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{17}{8}\rangle$
Rams:$(1, 3, 7)$
Jump set:$[1, 7, 15, 23]$
Roots of unity:$4 = 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.1.4.8b1.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 8 x^{7} + 4 x^{6} + 2 x^{4} + 4 x^{2} + 8 x + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[17, 10, 4, 0]$

Invariants of the Galois closure

Galois degree: $16$
Galois group: $D_8$ (as 8T6)
Inertia group: $D_4$ (as 8T4)
Wild inertia group: $D_4$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 3, 4]$
Galois Swan slopes: $[1,2,3]$
Galois mean slope: $3.0$
Galois splitting model:$x^{8} - 4 x^{6} + 12 x^{4} - 12 x^{2} + 5$