Properties

Label 2.1.16.28c1.3
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(28\)
Galois group $C_2^7:F_8:C_3$ (as 16T1800)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 2 x^{13} + 2 x^{6} + 4 x^{3} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $28$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{10}{7}, \frac{10}{7}, \frac{10}{7}, \frac{9}{4}]$
Visible Swan slopes:$[\frac{3}{7},\frac{3}{7},\frac{3}{7},\frac{5}{4}]$
Means:$\langle\frac{3}{14}, \frac{9}{28}, \frac{3}{8}, \frac{13}{16}\rangle$
Rams:$(\frac{3}{7}, \frac{3}{7}, \frac{3}{7}, 7)$
Jump set:$[1, 2, 4, 11, 27]$
Roots of unity:$2$

Intermediate fields

2.1.8.10a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 2 x^{13} + 2 x^{6} + 4 x^{3} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[13, 6, 6, 6, 0]$

Invariants of the Galois closure

Galois degree: $21504$
Galois group: $C_2^7:F_8:C_3$ (as 16T1800)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed