Properties

Label 19.7.6.1
Base \(\Q_{19}\)
Degree \(7\)
e \(7\)
f \(1\)
c \(6\)
Galois group $F_7$ (as 7T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{7} + 19\) Copy content Toggle raw display

Invariants

Base field: $\Q_{19}$
Degree $d$: $7$
Ramification exponent $e$: $7$
Residue field degree $f$: $1$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{19}(\sqrt{2})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 19 }) }$: $1$
This field is not Galois over $\Q_{19}.$
Visible slopes:None

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 19 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{19}$
Relative Eisenstein polynomial: \( x^{7} + 19 \) Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $F_7$ (as 7T4)
Inertia group: $C_7$ (as 7T1)
Wild inertia group: $C_1$
Unramified degree: $6$
Tame degree: $7$
Wild slopes: None
Galois mean slope: $6/7$
Galois splitting model:$x^{7} - 19$