Properties

Label 19.6.4.1
Base \(\Q_{19}\)
Degree \(6\)
e \(3\)
f \(2\)
c \(4\)
Galois group $C_6$ (as 6T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{6} + 304 x^{3} - 5415\) Copy content Toggle raw display

Invariants

Base field: $\Q_{19}$
Degree $d$: $6$
Ramification exponent $e$: $3$
Residue field degree $f$: $2$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{19}(\sqrt{2})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 19 }) }$: $6$
This field is Galois and abelian over $\Q_{19}.$
Visible slopes:None

Intermediate fields

$\Q_{19}(\sqrt{2})$, 19.3.2.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{19}(\sqrt{2})$ $\cong \Q_{19}(t)$ where $t$ is a root of \( x^{2} + 18 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 19 t + 323 \) $\ \in\Q_{19}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + 3z + 3$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:Intransitive group isomorphic to $C_3$
Wild inertia group:$C_1$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:None
Galois mean slope:$2/3$
Galois splitting model:$x^{6} - x^{5} + x^{4} - 99 x^{3} + 281 x^{2} + 573 x + 981$