Defining polynomial
\(x^{3} + 76\)
|
Invariants
Base field: | $\Q_{19}$ |
Degree $d$: | $3$ |
Ramification exponent $e$: | $3$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $2$ |
Discriminant root field: | $\Q_{19}$ |
Root number: | $1$ |
$\card{ \Gal(K/\Q_{ 19 }) }$: | $3$ |
This field is Galois and abelian over $\Q_{19}.$ | |
Visible slopes: | None |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 19 }$. |
Unramified/totally ramified tower
Unramified subfield: | $\Q_{19}$ |
Relative Eisenstein polynomial: |
\( x^{3} + 76 \)
|
Ramification polygon
Residual polynomials: | $z^{2} + 3z + 3$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |