Defining polynomial
\(x^{15} + 20 x^{13} + 85 x^{12} + 160 x^{11} + 1417 x^{10} + 3530 x^{9} + 7020 x^{8} + 6890 x^{7} + 76970 x^{6} + 160207 x^{5} + 1168245 x^{4} + 470325 x^{3} + 1653430 x^{2} + 224615 x + 1762712\)
|
Invariants
Base field: | $\Q_{19}$ |
Degree $d$: | $15$ |
Ramification exponent $e$: | $5$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $12$ |
Discriminant root field: | $\Q_{19}$ |
Root number: | $1$ |
$\card{ \Aut(K/\Q_{ 19 }) }$: | $3$ |
This field is not Galois over $\Q_{19}.$ | |
Visible slopes: | None |
Intermediate fields
19.3.0.1, 19.5.4.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 19.3.0.1 $\cong \Q_{19}(t)$ where $t$ is a root of
\( x^{3} + 4 x + 17 \)
|
Relative Eisenstein polynomial: |
\( x^{5} + 19 \)
$\ \in\Q_{19}(t)[x]$
|
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $C_3\times D_5$ (as 15T3) |
Inertia group: | Intransitive group isomorphic to $C_5$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $6$ |
Tame degree: | $5$ |
Wild slopes: | None |
Galois mean slope: | $4/5$ |
Galois splitting model: | Not computed |