Properties

Label 19.15.0.1
Base \(\Q_{19}\)
Degree \(15\)
e \(1\)
f \(15\)
c \(0\)
Galois group $C_{15}$ (as 15T1)

Related objects

Learn more

Defining polynomial

\(x^{15} + x^{2} + 4\)  Toggle raw display

Invariants

Base field: $\Q_{19}$
Degree $d$: $15$
Ramification exponent $e$: $1$
Residue field degree $f$: $15$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{19}$
Root number: $1$
$|\Gal(K/\Q_{ 19 })|$: $15$
This field is Galois and abelian over $\Q_{19}.$

Intermediate fields

19.3.0.1, 19.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:19.15.0.1 $\cong \Q_{19}(t)$ where $t$ is a root of \( x^{15} + x^{2} + 4 \)  Toggle raw display
Relative Eisenstein polynomial:\( x - 19 \)$\ \in\Q_{19}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_{15}$ (as 15T1)
Inertia group:trivial
Wild inertia group:$C_1$
Unramified degree:$15$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:Not computed