Properties

Label 19.1.6.5a1.5
Base \(\Q_{19}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(5\)
Galois group $C_6$ (as 6T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{6} + 247\) Copy content Toggle raw display

Invariants

Base field: $\Q_{19}$
Degree $d$: $6$
Ramification index $e$: $6$
Residue field degree $f$: $1$
Discriminant exponent $c$: $5$
Discriminant root field: $\Q_{19}(\sqrt{19})$
Root number: $i$
$\Aut(K/\Q_{19})$ $=$$\Gal(K/\Q_{19})$: $C_6$
This field is Galois and abelian over $\Q_{19}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$18 = (19 - 1)$

Intermediate fields

$\Q_{19}(\sqrt{19})$, 19.1.3.2a1.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{19}$
Relative Eisenstein polynomial: \( x^{6} + 247 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^5 + 6 z^4 + 15 z^3 + z^2 + 15 z + 6$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $6$
Galois group: $C_6$ (as 6T1)
Inertia group: $C_6$ (as 6T1)
Wild inertia group: $C_1$
Galois unramified degree: $1$
Galois tame degree: $6$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.8333333333333334$
Galois splitting model:$x^{6} - x^{5} - 55 x^{4} + 160 x^{3} - 20 x^{2} - 176 x + 64$