Defining polynomial
|
\(x^{6} + 38\)
|
Invariants
| Base field: | $\Q_{19}$ |
| Degree $d$: | $6$ |
| Ramification index $e$: | $6$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $5$ |
| Discriminant root field: | $\Q_{19}(\sqrt{19})$ |
| Root number: | $i$ |
| $\Aut(K/\Q_{19})$ $=$$\Gal(K/\Q_{19})$: | $C_6$ |
| This field is Galois and abelian over $\Q_{19}.$ | |
| Visible Artin slopes: | $[\ ]$ |
| Visible Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Jump set: | undefined |
| Roots of unity: | $18 = (19 - 1)$ |
Intermediate fields
| $\Q_{19}(\sqrt{19})$, 19.1.3.2a1.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | $\Q_{19}$ |
| Relative Eisenstein polynomial: |
\( x^{6} + 38 \)
|
Ramification polygon
| Residual polynomials: | $z^5 + 6 z^4 + 15 z^3 + z^2 + 15 z + 6$ |
| Associated inertia: | $1$ |
| Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
| Galois degree: | $6$ |
| Galois group: | $C_6$ (as 6T1) |
| Inertia group: | $C_6$ (as 6T1) |
| Wild inertia group: | $C_1$ |
| Galois unramified degree: | $1$ |
| Galois tame degree: | $6$ |
| Galois Artin slopes: | $[\ ]$ |
| Galois Swan slopes: | $[\ ]$ |
| Galois mean slope: | $0.8333333333333334$ |
| Galois splitting model: | $x^{6} - x^{5} - 55 x^{4} + 160 x^{3} + 246 x^{2} - 1107 x + 729$ |