Base \(\Q_{179}\)
Degree \(15\)
e \(15\)
f \(1\)
c \(14\)
Galois group $D_{15}$ (as 15T2)

Related objects

Learn more

Defining polynomial

\(x^{15} - 179\)  Toggle raw display


Base field: $\Q_{179}$
Degree $d$: $15$
Ramification exponent $e$: $15$
Residue field degree $f$: $1$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{179}(\sqrt{2})$
Root number: $1$
$|\Aut(K/\Q_{ 179 })|$: $1$
This field is not Galois over $\Q_{179}.$

Intermediate fields,

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{179}$
Relative Eisenstein polynomial:\( x^{15} - 179 \)  Toggle raw display

Invariants of the Galois closure

Galois group:$D_{15}$ (as 15T2)
Inertia group:$C_{15}$
Wild inertia group:$C_1$
Unramified degree:$2$
Tame degree:$15$
Wild slopes:None
Galois mean slope:$14/15$
Galois splitting model:Not computed