Defining polynomial
\(x^{8} + 64 x^{7} + 1548 x^{6} + 16960 x^{5} + 74840 x^{4} + 51968 x^{3} + 39432 x^{2} + 270464 x + 1062564\) |
Invariants
Base field: | $\Q_{17}$ |
Degree $d$: | $8$ |
Ramification exponent $e$: | $4$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $6$ |
Discriminant root field: | $\Q_{17}$ |
Root number: | $-1$ |
$\card{ \Gal(K/\Q_{ 17 }) }$: | $8$ |
This field is Galois and abelian over $\Q_{17}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{17}(\sqrt{3})$, $\Q_{17}(\sqrt{17})$, $\Q_{17}(\sqrt{17\cdot 3})$, 17.4.2.1, 17.4.3.2, 17.4.3.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{17}(\sqrt{3})$ $\cong \Q_{17}(t)$ where $t$ is a root of \( x^{2} + 16 x + 3 \) |
Relative Eisenstein polynomial: | \( x^{4} + 17 \) $\ \in\Q_{17}(t)[x]$ |
Ramification polygon
Data not computedInvariants of the Galois closure
Galois group: | $C_2\times C_4$ (as 8T2) |
Inertia group: | Intransitive group isomorphic to $C_4$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $2$ |
Tame degree: | $4$ |
Wild slopes: | None |
Galois mean slope: | $3/4$ |
Galois splitting model: | Not computed |