Properties

Label 17.6.3.1
Base \(\Q_{17}\)
Degree \(6\)
e \(2\)
f \(3\)
c \(3\)
Galois group $C_6$ (as 6T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{6} + 459 x^{5} + 70280 x^{4} + 3597823 x^{3} + 1271380 x^{2} + 4696159 x + 50437479\) Copy content Toggle raw display

Invariants

Base field: $\Q_{17}$
Degree $d$: $6$
Ramification exponent $e$: $2$
Residue field degree $f$: $3$
Discriminant exponent $c$: $3$
Discriminant root field: $\Q_{17}(\sqrt{17})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 17 }) }$: $6$
This field is Galois and abelian over $\Q_{17}.$
Visible slopes:None

Intermediate fields

$\Q_{17}(\sqrt{17})$, 17.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:17.3.0.1 $\cong \Q_{17}(t)$ where $t$ is a root of \( x^{3} + x + 14 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 153 x + 17 \) $\ \in\Q_{17}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Data not computed

Invariants of the Galois closure

Galois group: $C_6$ (as 6T1)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_1$
Unramified degree: $3$
Tame degree: $2$
Wild slopes: None
Galois mean slope: $1/2$
Galois splitting model:Not computed