Properties

Label 17.12.8.1
Base \(\Q_{17}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(8\)
Galois group $C_3 : C_4$ (as 12T5)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 225 x^{10} + 98 x^{9} + 17904 x^{8} + 10824 x^{7} + 611647 x^{6} + 498390 x^{5} + 8494833 x^{4} + 11764900 x^{3} + 38205036 x^{2} + 73669974 x + 36476587\) Copy content Toggle raw display

Invariants

Base field: $\Q_{17}$
Degree $d$: $12$
Ramification exponent $e$: $3$
Residue field degree $f$: $4$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{17}(\sqrt{3})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 17 }) }$: $12$
This field is Galois over $\Q_{17}.$
Visible slopes:None

Intermediate fields

$\Q_{17}(\sqrt{3})$, 17.3.2.1 x3, 17.4.0.1, 17.6.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:17.4.0.1 $\cong \Q_{17}(t)$ where $t$ is a root of \( x^{4} + 7 x^{2} + 10 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 51 x + 17 \) $\ \in\Q_{17}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + 3z + 3$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_3:C_4$ (as 12T5)
Inertia group:Intransitive group isomorphic to $C_3$
Wild inertia group:$C_1$
Unramified degree:$4$
Tame degree:$3$
Wild slopes:None
Galois mean slope:$2/3$
Galois splitting model:Not computed