Defining polynomial
\(x^{10} + 80 x^{9} + 2575 x^{8} + 41920 x^{7} + 350810 x^{6} + 1298690 x^{5} + 1053790 x^{4} + 419780 x^{3} + 741365 x^{2} + 5317450 x + 16794084\)
|
Invariants
Base field: | $\Q_{17}$ |
Degree $d$: | $10$ |
Ramification exponent $e$: | $5$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $8$ |
Discriminant root field: | $\Q_{17}(\sqrt{3})$ |
Root number: | $1$ |
$\card{ \Aut(K/\Q_{ 17 }) }$: | $2$ |
This field is not Galois over $\Q_{17}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{17}(\sqrt{3})$, 17.5.4.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{17}(\sqrt{3})$ $\cong \Q_{17}(t)$ where $t$ is a root of
\( x^{2} + 16 x + 3 \)
|
Relative Eisenstein polynomial: |
\( x^{5} + 17 \)
$\ \in\Q_{17}(t)[x]$
|
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $F_5$ (as 10T4) |
Inertia group: | Intransitive group isomorphic to $C_5$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $4$ |
Tame degree: | $5$ |
Wild slopes: | None |
Galois mean slope: | $4/5$ |
Galois splitting model: | Not computed |