Base \(\Q_{17}\)
Degree \(10\)
e \(2\)
f \(5\)
c \(5\)
Galois group $C_{10}$ (as 10T1)

Related objects


Learn more

Defining polynomial

\(x^{10} + 83521 x^{2} - 19877998\) Copy content Toggle raw display


Base field: $\Q_{17}$
Degree $d$: $10$
Ramification exponent $e$: $2$
Residue field degree $f$: $5$
Discriminant exponent $c$: $5$
Discriminant root field: $\Q_{17}(\sqrt{17\cdot 3})$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 17 }) }$: $10$
This field is Galois and abelian over $\Q_{17}.$
Visible slopes:None

Intermediate fields

$\Q_{17}(\sqrt{17\cdot 3})$,

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield: $\cong \Q_{17}(t)$ where $t$ is a root of \( x^{5} + x + 14 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 17 t \) $\ \in\Q_{17}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_{10}$ (as 10T1)
Inertia group:Intransitive group isomorphic to $C_2$
Wild inertia group:$C_1$
Unramified degree:$5$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:Not computed