Properties

Label 17.1.12.11a1.3
Base \(\Q_{17}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(11\)
Galois group $S_3 \times C_4$ (as 12T11)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 153\) Copy content Toggle raw display

Invariants

Base field: $\Q_{17}$
Degree $d$: $12$
Ramification index $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $11$
Discriminant root field: $\Q_{17}(\sqrt{17})$
Root number: $-1$
$\Aut(K/\Q_{17})$: $C_4$
This field is not Galois over $\Q_{17}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$16 = (17 - 1)$

Intermediate fields

$\Q_{17}(\sqrt{17})$, 17.1.3.2a1.1, 17.1.4.3a1.3, 17.1.6.5a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{17}$
Relative Eisenstein polynomial: \( x^{12} + 153 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{11} + 12 z^{10} + 15 z^9 + 16 z^8 + 2 z^7 + 10 z^6 + 6 z^5 + 10 z^4 + 2 z^3 + 16 z^2 + 15 z + 12$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $24$
Galois group: $C_4\times S_3$ (as 12T11)
Inertia group: $C_{12}$ (as 12T1)
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $12$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9166666666666666$
Galois splitting model:not computed