Properties

Label 151.4.2.1
Base \(\Q_{151}\)
Degree \(4\)
e \(2\)
f \(2\)
c \(2\)
Galois group $C_2^2$ (as 4T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} + 298 x^{3} + 22515 x^{2} + 46786 x + 3373376\) Copy content Toggle raw display

Invariants

Base field: $\Q_{151}$
Degree $d$: $4$
Ramification exponent $e$: $2$
Residue field degree $f$: $2$
Discriminant exponent $c$: $2$
Discriminant root field: $\Q_{151}$
Root number: $1$
$\card{ \Gal(K/\Q_{ 151 }) }$: $4$
This field is Galois and abelian over $\Q_{151}.$
Visible slopes:None

Intermediate fields

$\Q_{151}(\sqrt{3})$, $\Q_{151}(\sqrt{151})$, $\Q_{151}(\sqrt{151\cdot 3})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{151}(\sqrt{3})$ $\cong \Q_{151}(t)$ where $t$ is a root of \( x^{2} + 149 x + 6 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 151 \) $\ \in\Q_{151}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_2^2$ (as 4T2)
Inertia group:Intransitive group isomorphic to $C_2$
Wild inertia group:$C_1$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model: $x^{4} + 3473 x^{2} + 3283344$ Copy content Toggle raw display