Properties

Label 13.8.0.1
Base \(\Q_{13}\)
Degree \(8\)
e \(1\)
f \(8\)
c \(0\)
Galois group $C_8$ (as 8T1)

Related objects

Learn more

Defining polynomial

\(x^{8} + 4 x^{2} - x + 6\)  Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $8$
Ramification exponent $e$: $1$
Residue field degree $f$: $8$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{13}(\sqrt{2})$
Root number: $1$
$|\Gal(K/\Q_{ 13 })|$: $8$
This field is Galois and abelian over $\Q_{13}.$

Intermediate fields

$\Q_{13}(\sqrt{2})$, 13.4.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:13.8.0.1 $\cong \Q_{13}(t)$ where $t$ is a root of \( x^{8} + 4 x^{2} - x + 6 \)  Toggle raw display
Relative Eisenstein polynomial:\( x - 13 \)$\ \in\Q_{13}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_8$ (as 8T1)
Inertia group:trivial
Unramified degree:$8$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{8} + 8 x^{6} + 20 x^{4} + 16 x^{2} + 2$