Properties

Label 13.6.4.3
Base \(\Q_{13}\)
Degree \(6\)
e \(3\)
f \(2\)
c \(4\)
Galois group $C_6$ (as 6T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 12 x + 2 )^{3} + \left(26 x + 156\right) ( x^{2} + 12 x + 2 ) + 3536 x + 21385$ Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $6$
Ramification exponent $e$: $3$
Residue field degree $f$: $2$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{13}(\sqrt{2})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 13 }) }$: $6$
This field is Galois and abelian over $\Q_{13}.$
Visible slopes:None

Intermediate fields

$\Q_{13}(\sqrt{2})$, 13.3.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{13}(\sqrt{2})$ $\cong \Q_{13}(t)$ where $t$ is a root of \( x^{2} + 12 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 13 \) $\ \in\Q_{13}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_6$ (as 6T1)
Inertia group: Intransitive group isomorphic to $C_3$
Wild inertia group: $C_1$
Unramified degree: $2$
Tame degree: $3$
Wild slopes: None
Galois mean slope: $2/3$
Galois splitting model:$x^{6} - x^{5} - 12 x^{4} + 13 x^{3} + 19 x^{2} - 10 x - 5$