Properties

Label 13.6.3.2
Base \(\Q_{13}\)
Degree \(6\)
e \(2\)
f \(3\)
c \(3\)
Galois group $C_6$ (as 6T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + 2 x + 11 )^{2} + \left(-4 x - 22\right) ( x^{3} + 2 x + 11 ) + 342 x^{2} + 44 x - 24046$ Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $6$
Ramification exponent $e$: $2$
Residue field degree $f$: $3$
Discriminant exponent $c$: $3$
Discriminant root field: $\Q_{13}(\sqrt{13\cdot 2})$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 13 }) }$: $6$
This field is Galois and abelian over $\Q_{13}.$
Visible slopes:None

Intermediate fields

$\Q_{13}(\sqrt{13\cdot 2})$, 13.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:13.3.0.1 $\cong \Q_{13}(t)$ where $t$ is a root of \( x^{3} + 2 x + 11 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 13 t \) $\ \in\Q_{13}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_6$ (as 6T1)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_1$
Unramified degree: $3$
Tame degree: $2$
Wild slopes: None
Galois mean slope: $1/2$
Galois splitting model:$x^{6} - 3 x^{5} - 51 x^{4} + 105 x^{3} + 723 x^{2} - 867 x - 2609$