Properties

Label 13.3.2.2
Base \(\Q_{13}\)
Degree \(3\)
e \(3\)
f \(1\)
c \(2\)
Galois group $C_3$ (as 3T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{3} + 13\) Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $3$
Ramification exponent $e$: $3$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Discriminant root field: $\Q_{13}$
Root number: $1$
$\card{ \Gal(K/\Q_{ 13 }) }$: $3$
This field is Galois and abelian over $\Q_{13}.$
Visible slopes:None

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 13 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{13}$
Relative Eisenstein polynomial: \( x^{3} + 13 \) Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_3$ (as 3T1)
Inertia group: $C_3$ (as 3T1)
Wild inertia group: $C_1$
Unramified degree: $1$
Tame degree: $3$
Wild slopes: None
Galois mean slope: $2/3$
Galois splitting model:$x^{3} - x^{2} - 4 x - 1$