## Defining polynomial

\(x^{3} - 2 x + 6\) |

## Invariants

Base field: | $\Q_{13}$ |

Degree $d$: | $3$ |

Ramification exponent $e$: | $1$ |

Residue field degree $f$: | $3$ |

Discriminant exponent $c$: | $0$ |

Discriminant root field: | $\Q_{13}$ |

Root number: | $1$ |

$\card{ \Gal(K/\Q_{ 13 }) }$: | $3$ |

This field is Galois and abelian over $\Q_{13}.$ | |

Visible slopes: | None |

## Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 13 }$. |

## Unramified/totally ramified tower

Unramified subfield: | 13.3.0.1 $\cong \Q_{13}(t)$ where $t$ is a root of \( x^{3} - 2 x + 6 \) |

Relative Eisenstein polynomial: | \( x - 13 \) $\ \in\Q_{13}(t)[x]$ |

Indices of inseparability: | $[0]$ |

## Invariants of the Galois closure

Galois group: | $C_3$ (as 3T1) |

Inertia group: | trivial |

Wild inertia group: | $C_1$ |

Unramified degree: | $3$ |

Tame degree: | $1$ |

Wild slopes: | None |

Galois mean slope: | $0$ |

Galois splitting model: | $x^{3} - 3 x - 1$ |