Properties

Label 13.2.1.2
Base \(\Q_{13}\)
Degree \(2\)
e \(2\)
f \(1\)
c \(1\)
Galois group $C_2$ (as 2T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{2} + 26\) Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $2$
Ramification exponent $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $1$
Discriminant root field: $\Q_{13}(\sqrt{13\cdot 2})$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 13 }) }$: $2$
This field is Galois and abelian over $\Q_{13}.$
Visible slopes:None

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 13 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{13}$
Relative Eisenstein polynomial: \( x^{2} + 26 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_2$ (as 2T1)
Inertia group:$C_2$ (as 2T1)
Wild inertia group:$C_1$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{2} + 26$