Properties

Label 13.1.13.16a1.1
Base \(\Q_{13}\)
Degree \(13\)
e \(13\)
f \(1\)
c \(16\)
Galois group $C_{13}:C_6$ (as 13T5)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{13} + 13 x^{4} + 13\) Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $13$
Ramification index $e$: $13$
Residue field degree $f$: $1$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{13}$
Root number: $1$
$\Aut(K/\Q_{13})$: $C_1$
This field is not Galois over $\Q_{13}.$
Visible Artin slopes:$[\frac{4}{3}]$
Visible Swan slopes:$[\frac{1}{3}]$
Means:$\langle\frac{4}{13}\rangle$
Rams:$(\frac{1}{3})$
Jump set:undefined
Roots of unity:$12 = (13 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 13 }$.

Canonical tower

Unramified subfield:$\Q_{13}$
Relative Eisenstein polynomial: \( x^{13} + 13 x^{4} + 13 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 9$
Associated inertia:$2$
Indices of inseparability:$[4, 0]$

Invariants of the Galois closure

Galois degree: $78$
Galois group: $C_{13}:C_6$ (as 13T5)
Inertia group: $C_{13}:C_3$ (as 13T3)
Wild inertia group: $C_{13}$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}]$
Galois Swan slopes: $[\frac{1}{3}]$
Galois mean slope: $1.2820512820512822$
Galois splitting model:not computed