Properties

Label 11.15.14.2
Base \(\Q_{11}\)
Degree \(15\)
e \(15\)
f \(1\)
c \(14\)
Galois group $S_3 \times C_5$ (as 15T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 33\) Copy content Toggle raw display

Invariants

Base field: $\Q_{11}$
Degree $d$: $15$
Ramification exponent $e$: $15$
Residue field degree $f$: $1$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{11}(\sqrt{2})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 11 }) }$: $5$
This field is not Galois over $\Q_{11}.$
Visible slopes:None

Intermediate fields

11.3.2.1, 11.5.4.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{11}$
Relative Eisenstein polynomial: \( x^{15} + 33 \) Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_5\times S_3$ (as 15T4)
Inertia group: $C_{15}$ (as 15T1)
Wild inertia group: $C_1$
Unramified degree: $2$
Tame degree: $15$
Wild slopes: None
Galois mean slope: $14/15$
Galois splitting model:Not computed